In [1]:
from plasticnet import *
In [3]:
ls hdf5/*
In [5]:
pre=neurons.natural_images('hdf5/bbsk081604_dog.hdf5',rf_size=13,verbose=False)
post=neurons.linear_neuron(1)
post+=neurons.process.min_max(0,500)
c=connections.BCM(pre,post,[-.05,.05])
c.eta=5e-6
c.tau=1000
sim=simulation(1000*1000)
sim.monitor(c,['weights','theta'],1000)
run_sim(sim,[pre,post],[c],display_hash=False)
utils.plot_rfs_and_theta(sim,[pre,post],[c])
Out[5]:
post=neurons.linear_neuron(1)
to
post=neurons.linear_neuron(5)
runs 5 neurons at a time.
In [6]:
pre=neurons.natural_images('hdf5/bbsk081604_dog.hdf5',rf_size=13,verbose=False)
post=neurons.linear_neuron(1)
c=connections.Hebb(pre,post,[-.05,.05])
c+=connections.process.normalization()
c.eta=5e-6
c.tau=1000
sim=simulation(1000*1000)
sim.monitor(c,['weights','theta'],1000)
run_sim(sim,[pre,post],[c],display_hash=False)
utils.plot_rfs_and_theta(sim,[pre,post],[c])
Out[6]:
In [ ]: